Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Andrology ; 10(6): 1016-1022, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895943

ABSTRACT

BACKGROUND: The development of covid-19 vaccinations represents a notable scientific achievement. Nevertheless, concerns have been raised regarding their possible detrimental impact on male fertility OBJECTIVE: To investigate the effect of covid-19 BNT162b2 (Pfizer) vaccine on semen parameters among semen donors (SD). METHODS: Thirty-seven SD from three sperm banks that provided 216 samples were included in that retrospective longitudinal multicenter cohort study. BNT162b2 vaccination included two doses, and vaccination completion was scheduled 7 days after the second dose. The study included four phases: T0 - pre-vaccination baseline control, which encompassed 1-2 initial samples per SD; T1, T2 and T3 - short, intermediate, and long terms evaluations, respectively. Each included 1-3 semen samples per donor provided 15-45, 75-125 and over 145 days after vaccination completion, respectively. The primary endpoints were semen parameters. Three statistical analyses were conducted: (1) generalized estimated equation model; (2) first sample and (3) samples' mean of each donor per period were compared to T0. RESULTS: Repetitive measurements revealed -15.4% sperm concentration decrease on T2 (CI -25.5%-3.9%, p = 0.01) leading to total motile count 22.1% reduction (CI -35% - -6.6%, p = 0.007) compared to T0. Similarly, analysis of first semen sample only and samples' mean per donor resulted in concentration and total motile count (TMC) reductions on T2 compared to T0 - median decline of 12 million/ml and 31.2 million motile spermatozoa, respectively (p = 0.02 and 0.002 respectively) on first sample evaluation and median decline of 9.5 × 106 and 27.3 million motile spermatozoa (p = 0.004 and 0.003, respectively) on samples' mean examination. T3 evaluation demonstrated overall recovery without. Semen volume and sperm motility were not impaired. DISCUSSION: This longitudinal study focused on SD demonstrates selective temporary sperm concentration and TMC deterioration 3 months after vaccination followed by later recovery verified by diverse statistical analyses. CONCLUSIONS: Systemic immune response after BNT162b2 vaccine is a reasonable cause for transient semen concentration and TMC decline. Long-term prognosis remains good.


Subject(s)
COVID-19 Vaccines , COVID-19 , Sperm Motility , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Humans , Longitudinal Studies , Male , Retrospective Studies , Semen , Semen Analysis , Sperm Count , Spermatozoa/physiology , Tissue Donors , Vaccination/adverse effects
2.
Fertil Steril ; 117(2): 287-296, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587766

ABSTRACT

OBJECTIVE: To study the contagiousness of sperm and its influence on fertility after recovery from COVID-19 infection. DESIGN: Prospective cohort study. SETTING: University medical center. PATIENT(S): One hundred twenty Belgian men who had recovered from proven COVID-19 infection. INTERVENTION(S): No intervention was performed. MAIN OUTCOME MEASURE(S): Semen quality was assessed using the World Health Organisation criteria. DNA damage to sperm cells was assessed by quantifying the DNA fragmentation index and the high density stainability. Finally antibodies against SARS-CoV2 spike-1 antigen, nuclear and S1-receptor binding domain were measured by Elisa and chemilumenscent microparticle immunoassays, respectively. RESULT(S): SARS-CoV-2 RNA was not detected in semen during the period shortly after infection nor at a later time. Mean progressive motility was reduced in 60% of men tested shortly (<1 month) after COVID-19 infection, 37% of men tested 1 to 2 months after COVID-19 infection, and 28% of men tested >2 months after COVID-19 infection. Mean sperm count was reduced in 37% of men tested shortly (<1 month) after COVID-19 infection, 29% of men tested 1 to 2 months after COVID-19 infection, and 6% of men tested >2 months after COVID-19 infection. The severity of COVID-19 infection and the presence of fever were not correlated with sperm characteristics, but there were strong correlations between sperm abnormalities and the titers of SARS-CoV-2 IgG antibody against spike 1 and the receptor- binding domain of spike 1, but not against nucleotide, in serum. High levels of antisperm antibodies developed in three men (2.5%). CONCLUSION(S): Semen is not infectious with SARS-CoV-2 at 1 week or more after COVID-19 infection (mean, 53 days). However, couples with a desire for pregnancy should be warned that sperm quality after COVID-19 infection can be suboptimal. The estimated recovery time is 3 months, but further follow-up studies are under way to confirm this and to determine if permanent damage occurred in a minority of men.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/virology , RNA, Viral/analysis , SARS-CoV-2/genetics , Semen/virology , Spermatozoa/physiology , Adult , Antibodies, Viral/analysis , Antibodies, Viral/blood , COVID-19/transmission , DNA Damage , DNA Fragmentation , Humans , Immunoglobulin G/blood , Infertility, Male/virology , Male , Prospective Studies , SARS-CoV-2/immunology , Semen Analysis , Sperm Count , Sperm Motility , Spermatozoa/abnormalities , Spermatozoa/chemistry , Spike Glycoprotein, Coronavirus/immunology
3.
Cells ; 10(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1323125

ABSTRACT

The open carrier system (OC) is used for vitrification due to its high efficiency in preserving female fertility, but concerns remain that it bears possible risks of cross-contamination. Closed carrier systems (CC) could be an alternative to the OC to increase safety. However, the viability and developmental competence of vitrified/warmed (VW) oocytes using the CC were significantly lower than with OC. We aimed to improve the efficiency of the CC. Metaphase II oocytes were collected from mice after superovulation and subjected to in vitro fertilization after vitrification/warming. Increasing the cooling/warming rate and exposure time to cryoprotectants as key parameters for the CC effectively improved the survival rate and developmental competence of VW oocytes. When all the conditions that improved the outcomes were applied to the conventional CC, hereafter named the modified vitrification/warming procedure using CC (mVW-CC), the viability and developmental competence of VW oocytes were significantly improved as compared to those of VW oocytes in the CC. Furthermore, mVW-CC increased the spindle normality of VW oocytes, as well as the cell number of blastocysts developed from VW oocytes. Collectively, our mVW-CC optimized for mouse oocytes can be utilized for humans without concerns regarding possible cross-contamination during vitrification in the future.


Subject(s)
Blastocyst/cytology , Cryopreservation/methods , Fertilization in Vitro/methods , Oocytes/cytology , Vitrification , Animals , Biomarkers/metabolism , Blastocyst/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Survival/drug effects , Cells, Cultured , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Female , Gene Expression , Male , Metaphase , Mice , Oocytes/drug effects , Oocytes/metabolism , Spermatozoa/physiology , Sucrose/pharmacology
4.
Asian J Androl ; 23(5): 479-483, 2021.
Article in English | MEDLINE | ID: covidwho-1225879

ABSTRACT

The novel coronavirus disease (COVID-19) pandemic is emerging as a global health threat and shows a higher risk for men than women. Thus far, the studies on andrological consequences of COVID-19 are limited. To ascertain the consequences of COVID-19 on sperm parameters after recovery, we recruited 41 reproductive-aged male patients who had recovered from COVID-19, and analyzed their semen parameters and serum sex hormones at a median time of 56 days after hospital discharge. For longitudinal analysis, a second sampling was obtained from 22 of the 41 patients after a median time interval of 29 days from first sampling. Compared with controls who had not suffered from COVID-19, the total sperm count, sperm concentration, and percentages of motile and progressively motile spermatozoa in the patients were significantly lower at first sampling, while sperm vitality and morphology were not affected. The total sperm count, sperm concentration, and number of motile spermatozoa per ejaculate were significantly increased and the percentage of morphologically abnormal sperm was reduced at the second sampling compared with those at first in the 22 patients examined. Though there were higher prolactin and lower progesterone levels in patients at first sampling than those in controls, no significant alterations were detected for any sex hormones examined over time following COVID-19 recovery in the 22 patients. Although it should be interpreted carefully, these findings indicate an adverse but potentially reversible consequence of COVID-19 on sperm quality.


Subject(s)
COVID-19/physiopathology , SARS-CoV-2 , Semen/physiology , Spermatozoa/physiology , Adult , Asthenozoospermia/virology , COVID-19/complications , China , Gonadal Steroid Hormones/blood , Humans , Male , Progesterone/blood , Prolactin/blood , Semen Analysis , Sperm Count , Sperm Motility , Spermatozoa/abnormalities , Time Factors
5.
J Assist Reprod Genet ; 38(6): 1449-1457, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1126571

ABSTRACT

PURPOSE: We aimed to assess whether home collection and increased time to semen processing are associated with altered sperm parameters, fertilization rates (FR), day 5 usable quality blastocyst development rates (D5-UQBR), or pregnancy rates (PR) in patients undergoing IVF/ICSI. METHODS: This was a retrospective cohort study of patients undergoing IVF/ICSI before the coronavirus disease 2019 (COVID-19) pandemic ("clinic" collection, n = 119) and after COVID-19 ("home" collection, n = 125) at an academic fertility practice. Home collection occurred within 2 h of semen processing. Patient sperm parameters, FR (#2PN/MII), D5-UQBR (# transferable and freezable quality blastocysts/# 2PN), and PR in fresh transfer cycles were compared between clinic and home groups with t-tests. The association between time to processing on outcomes was assessed with regression modeling, controlling for potential confounders. RESULTS: Mean male age was 37.9 years in the clinic group and 37.2 years in the home group (p = 0.380). On average, men were abstinent for 3.0 days (SD 1.7) in the clinic group and 4.1 days (SD 5.4) in the home group (p = 0.028). Mean time to semen processing was 35.7 min (SD 9.4) in the clinic group and 82.6 min (SD 33.8) in the home group (p < 0.001). There was no association between collection location and increased time to processing on sperm motility, total motile count, FR, D5-UQBR, or PR. CONCLUSIONS: Our data suggest that increased time to processing up to 2 h with home semen collection does not negatively impact sperm parameters or early IVF/ICSI outcomes.


Subject(s)
Blastocyst/cytology , Fertilization , Pregnancy Rate , Semen Preservation/methods , Semen , Spermatozoa/physiology , Adult , Ambulatory Care , COVID-19 , Embryo Transfer , Female , Fertilization in Vitro , Humans , Male , Outcome Assessment, Health Care , Pregnancy , Retrospective Studies , Semen Analysis , Sperm Injections, Intracytoplasmic , Sperm Motility , Time Factors
6.
Open Biol ; 11(1): 200347, 2021 01.
Article in English | MEDLINE | ID: covidwho-1066515

ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged as a new public health crisis, threatening almost all aspects of human life. Originating in bats, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to humans through unknown intermediate hosts, where it is primarily known to cause pneumonia-like complications in the respiratory system. Organ-to-organ transmission has not been ruled out, thereby raising the possibility of the impact of SARS-CoV-2 infection on multiple organ systems. The male reproductive system has been hypothesized to be a potential target of SARS-CoV-2 infection, which is supported by some preliminary evidence. This may pose a global threat to male fertility potential, as men are more prone to SARS-CoV-2 infection than women, especially those of reproductive age. Preliminary reports have also indicated the possibility of sexual transmission of SARS-CoV-2. It may cause severe complications in infected couples. This review focuses on the pathophysiology of potential SARS-CoV-2 infection in the reproductive organs of males along with their invasion mechanisms. The risks of COVID-19 on male fertility as well as the differences in vulnerability to SARS-CoV-2 infection compared with females have also been highlighted.


Subject(s)
COVID-19/pathology , Reproductive Health , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/virology , Cytokines/metabolism , DNA Fragmentation , Humans , Lymphocytes/metabolism , Lymphocytes/virology , Male , Oxidative Stress , SARS-CoV-2/isolation & purification , Spermatozoa/physiology , Spermatozoa/virology
7.
J Endocrinol Invest ; 43(8): 1153-1157, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-973722

ABSTRACT

PURPOSE: The recent pandemic of severe acute respiratory syndrome (SARS) due to coronavirus (CoV) 2 (SARS-CoV-2) has raised several concerns in reproductive medicine. The aim of this review is to summarize available evidence providing an official position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS) METHODS: A comprehensive Pubmed, Web of Science, Embase, Medline and Cochrane library search was performed. Due to the limited evidence and the lack of studies, it was not possible to formulate recommendations according to the Oxford 2011 Levels of Evidence criteria. RESULTS: Several molecular characteristics of the SARS-CoV-2 can justify the presence of virus within the testis and possible alterations of spermatogenesis and endocrine function. Orchitis has been reported as a possible complication of SARS-CoV infection, but similar findings have not been reported for SARS-CoV-2. Alternatively, the orchitis could be the result of a vasculitis as COVID-19 has been associated with abnormalities in coagulation and the segmental vascularization of the testis could account for an orchitis-like syndrome. Finally, available data do not support the presence of SARS-CoV-2 in plasma seminal fluid of infected subjects. CONCLUSION: Data derived from other SARS-CoV infections suggest that in patients recovered from COVID-19, especially for those in reproductive age, andrological consultation and evaluation of gonadal function including semen analysis should be suggested. Studies in larger cohorts of currently infected subjects are warranted to confirm (or exclude) the presence of risks for male gametes that are destined either for cryopreservation in liquid nitrogen or for assisted reproduction techniques.


Subject(s)
Andrology/standards , Betacoronavirus , Coronavirus Infections/epidemiology , Cryopreservation/standards , Fertility Preservation/standards , Pneumonia, Viral/epidemiology , Spermatozoa/physiology , Andrology/trends , COVID-19 , Coronavirus Infections/therapy , Cryopreservation/trends , Fertility Preservation/trends , Humans , Italy/epidemiology , Male , Pandemics , Pneumonia, Viral/therapy , SARS-CoV-2 , Semen Analysis/standards , Semen Analysis/trends , Sexual Health/standards , Societies, Medical/standards
SELECTION OF CITATIONS
SEARCH DETAIL